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ABSTRACT 

Exploiting the experience of iterative decoding of modern codes (LDPC and turbo codes), recent studies have proposed 

new acquisition methods based on iterative message passing algorithms (iMPAs) to be run on loopy graphs to detect 

linear feedback shift register (LFSR) sequences with low-complexity at low signal-to-noise ratio (SNR). In this context, 

our contribution addresses the issue to the evaluation of the mean and the variance of the acquisition time of iMPA 

detectors, using Markov chain theory. This theoretical analysis leads to a comparison between the performance of 

iMPA detectors and fully parallel and serial search algorithms in terms of computational complexity and average 

acquisition times. 

I. INTRODUCTION 

IRECT-SEQUENCE/SPREAD-SPECTRUM (DS/SS) communications are widely used in wireless military and 

civil communications as well as in satellite positioning systems, because they provide low probability of 

interception, strong anti-jam protection, and low co-channel interferences. All these proprieties are basically due to use 

of long high-rate binary pseudo-noise (PN) sequences that spread the spectrum bandwidth and make it difficult to be 

detected and corrupted by jammers. At the receiver side, to correctly demodulate SS signals, a despreading operation is 

accomplished by correlating the incoming signal with its PN sequence, generated locally. Because of this, a precise 

code timing synchronization is necessary. This result is generally obtained in two receiver stages ([1], [2], and [3]): the 

acquisition stage, that provides a preliminary coarse alignment between the received PN sequence and its local replica, 

and the tracking stage, in which a fine synchronization is realized and maintained by a delay locked-loop (DLL) unit, 

exploiting the previous rough alignment. Therefore, the PN acquisition is the critical point to have a rapid and correct 

synchronization between DS/SS transmitters and receivers. 

 The standard and well-known acquisition techniques used to detect such sequences are ([1], [4]): full parallel search, 

simple serial search and hybrid search. The common denominator of all these techniques is that the received and local 

SS sequences are correlated and then processed by a suitable detector/decision rule to decide whether the two codes are 

in synchronism. The first method implements a maximum-likelihood (ML) estimation algorithm and needs a fully 

parallel search. Hence, it provides fast detection at price of a high implementation complexity, especially in case of long 

SS sequences. The simple serial search has lower complexity, but its acquisition time is prohibitively long. The hybrid 

search is a trade-off between these two algorithms. 

 Nevertheless, recent studies ([5], [6], and [7]), conducted independently, have presented a new technique to acquire 

linear feedback shift register (LSFR) sequences, demonstrating the perfect equivalence of a decoding and detection 

problem. This method is based on the paradigm of message passing (MP) on graphical models, and more specifically, 

on iterative message passing algorithms (iMPAs) to be run on loopy graphs ([8], [9], [10], [11], and [12]). In other 

words, instead of correlating the incoming signal with a local PN replica, this algorithm uses all the soft information 

provided by the received signals, as messages to be run on a predetermined graph, modelled on the structures of the 

LSFR sequence to be acquired, thus approximating the ML method. This results a sub-optimal algorithm, that searches 

all code phases in parallel with a complexity lower than the fully parallel implementation, and an acquisition time that is 

shorter than that of the simple serial algorithm. 

 This work addresses the problem to the evaluation of the mean and the variance of the acquisition time of iMPA 

detectors, exploiting Markov chain theory [13]. Starting from the Holmes’s seminal work, presented in [14], to compute 

the moment generating function (MGF) of the acquisition time in case of a non-coherent serial detector, we reuse this 

method for our goal. In particular, after the description of an iMPA detector architecture, we present all the standard 

procedures and stages that an acquisition unit should follow to correctly acquire an incoming SS signal. Then, we build 

the Markov chain flow graph of the detector stages, that is used to evaluate the MGF of its acquisition time. From the 

MGF, we can easily compute the mean and the variance of the acquisition time ([2], [13], and [14]), that are compared 
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to the corresponding parameters of the standard detection techniques (fully parallel and serial search). Furthermore, to 

complete this analysis, all these algorithms are also compared in terms of computational complexity and 

(missed/wrong) acquisition probability derived by simulations. 

 The reminder of this paper is structured as follows: section II introduces the DS/SS signal model used to measure 

detector performance, and gives an overview on iMPAs. A detailed description on the iMPA detector, its main stages, 

and the theoretical analysis to build the Markov chain and evaluate the main moments of the acquisition time are 

presented in section III. Section IV contains simulation results and comparisons between the new algorithm and the 

standard detection algorithms (fully parallel and simple serial search). Finally, the conclusions and suggestions for 

future works are reported in section V. 

II. SIGNAL MODEL AND DETECTION ALGORITHM 

A basic and standard base-band (BB) representation of a DS/SS communication system during the acquisition stage is 

reported in Fig. 1. It is basically made up of: a base-band transmitter, that produces a predetermined spreading 

sequence (LFSR sequences are considered), a channel that introduces a propagation delay (∆ ≥ 0) and an additive white 

gaussian noise (AWGN), and finally a detection unit that acquires received signals, estimating their code delay. The 

following subsections give more details for each stage of this communication system model. 

A. Base-Band Transmitter 

The BB transmitter is basically made up of a PN sequence generator that produces random binary sequences, c (each 

element is ck ∈ {0,1}) and a BPSK mapper that outputs the correspondent antipodal sequences y, where each component 

is yk = (−1)    . Only linear feedback shift register (LFSR) generators are taken into account in this paper. 

 LFSR sequences are implemented by a r-stage shift register (SR) with a linear combination of its elements in a 

feedback path [1]. A general LFSR generator is shown in Fig. 2. As shown in the picture, at the generic time k, 

assuming that ck is the SR output and ck+i (with 0 i r≤ ≤ ) is the content of the i
 th
 register, the following parity equation 

is verified 
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where ⊕  is modulo-2 addition and gi ∈  {0,1}, 0 i r≤ ≤ , are the feedback coefficients (also referred to as taps). The 

most common way to represent an r-stage LFSR is providing its generating polynomial (that also gives the tap 

configuration of the code) as 
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where D is the unit delay operator, and r is the polynomial degree. For a given degree r, g0 and gr are always 1. 

 M-Sequences are a subset of LFSR sequences, because their generating polynomials are primitive (see [1]). This 

characteristic implies that their period, N = 2
r
 – 1, is the maximum achievable with an r-stage LFSR generator (so they 

are also referred to as maximal LFSR sequences). Another consequence of this property is that these sequences are 

univocally identified by their generating polynomials, because the initial word of their SRs (except for the “forbidden” 

zero word) only produce a cyclical shift of the code.  

 We remark that in this work only m-sequences are considered to compare the iMPA detector performance to all 

standard acquisition algorithms, but, from the conclusions reported in [15], it is also possible to extend this analysis to 

Gold code detection. 

B. Communication Channel 

The incoming BB spreading signal at the detection unit is found to be 
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where zk is a noisy sample received by detection unit, yk  is the antipodal modulation of the spreading sequence chip ck 

(N is the sequence period), and nk is an additive white gaussian noise (AWGN) with mean value 0 and variance N0 / 2. 

No data modulation is shown, since we are assuming to acquire a pilot signal with coherent detection. This is 

admittedly a simplified representation, that we use here to “isolate” the issue we are concerned with as is customary 

done in the spread-spectrum literature (as also reported in [1], [5], [6], [7], and [15]).  
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Fig. 1. Model of a DS/SS communication system. 

 

Fig. 2. Scheme of a r-stage LFSR generator. 

 

C. Detection Unit 

All standard detection algorithms operate by correlating the received signal with a shifted local replica of the code, until 

the right alignment is obtained ([1], [3], and [4]). 

 A new approach is proposed in [5], [6], [7], [15], and [16]. It is basically a generalization of the standard sequence 

decoding problem. Consider the M-dimensional received vector, z = [z0, z1, …, zM – 1 ], the ML detection algorithm can 

be formulated as  
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where yi is a vector that contains M shifted chips of the transmitted PN sequence, and p(z|yi) is the likelihood function of 

yi. Instead of casting our problem into one of delay estimation, we stick to a detection approach. We have to search into 

a set of N different sequences corresponding to all possible shifts of the spreading code. This problem is definitely 

similar to performing decoding of a block code, in which the ML decoder selects the codeword yi (among a set of N 

different codewords that could have been transmitted) that maximizes p(z|yi), [2]. So, the equivalence between 

acquisition and decoding is clearly proved. 

 Exploiting the experience of iterative decoding of modern codes ([17], [18]), an ML algorithm can be implemented 

by a MPA run on graphical model without cycles (a tree graph). Unluckily, these optimal algorithms are often too 

complex to implement, so graphical models with cycles (e.g. Tanner graphs, TGs), [8] and [9], are commonly used. 

Indeed, these cyclic models yield sub-optimal solutions with lower complexity and it has been experimentally observed 

that, with a proper model design, the performance can be close to that of the MLA. These graphical models are, 

basically, made up of sets of variable nodes, directly associated to incoming soft information, and check nodes, that 

identify the parity equations (local constrains) verified by the transmitted code. Nevertheless, a systematic method for 

designing the best graphical model for a given specified code is not known. 

 Complete treatments on standard MPAs are reported in [8], [10], [11], and [12]. Roughly speaking, an iMPA, passes 

soft information between nodes in its graph, and each iteration ends when all nodes are activated. Hence, in order to 

correctly implement an iMPA, one must define its activation schedule, which is the order in which all variable and 

check nodes are activated, including when the algorithm is terminated. Typically, these algorithms end either when their 

estimated vectors verify all parity checks or when the max number of iteration, IMAX, is obtained. 

 The last step is to define the processing used to perform the message updating. As reported in [8], [10], and [12], 

there are two main algorithms: Sum-Product, and Min-Sum algorithm. We only consider the Min-Sum algorithm (MSA) 

version because it is simpler and does not require an estimate of the operating signal-to-noise ratio (SNR).  

 The next section initially gives a simplified design of the iMPA detector and describes its main phases, then 

continues with a theoretical analysis to evaluate the mean and the variance of its acquisition time, exploiting Markov 

chain theory. 

III. ACQUISITION TIME ANALYSIS  

A basic architectural design of a coherent iMPA detector (also referred to as iterative detection unit, iDU) is shown in 

Fig. 3. As the picture shows, it is made up of an input buffer (IB), to store the received vector z, an iterative processing 

unit (iPU), that runs the iMPA, which is the core of the iDU, and a parity control unit (PCU), that stops the acquisition 

procedure when the estimated binary vector verifies all the parity equations, otherwise a new iteration is carried out 

until the maximum number of iterations, IMAX, is achieved.  

 More in detail, considering the communication system shown in Fig. 1, a predetermined LFSR sequence is 

transmitted through an AWGN channel. At the receiver side, an incoming vector of M observations, z, (each element, 

zk, is characterized in (1)) is stored in the IB. So, let Tc be the chip time of a generic zk element (the chip rate is Rc = 1 / 

Tc), the required time to fill the buffer is M Tc. The iPU runs an iMPA on a predetermined loopy graph (see [8], [10], 

[11], and [12]). Typically, at the end of each iteration, the iMPA provides a soft-output information vector that is used 

to estimate the transmitted vector by hard decision, and, soon after, a parity control is executed on it ([15], and [16]). 

Because of this, the acquisition algorithm can end earlier than IMAX iterations, as soon as the check is positive. 

Nevertheless, to simplify our analysis, we will over-bound the acquisition time, assuming that the iMPA always ends 

when all IMAX iterations are run. Therefore, the time required by iPU, τiPU, to output a soft-output information vector 

(produced by the iMPA) and perform a hard-decision on it, is 
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where IMAX  is the maximum number of iterations of the iMPA, Tc is the chip time, Tit is the time per iteration (Rit = 1 / 

Tit is the iteration rate), and ρ = Tc / Tit = Rit / Rc is the iMPA time-factor. Of course, the ρ–factor depends on the 

implementation technology of the receiver. 

 When all IMAX iterations are run, the estimate vector, ĉ, is handed over to the PCU that checks the parity. If the parity 

control fails, a missed detection is fed back and a new received vector is processed by the iDU. In this case, the missed 

detection time, τMD, is 
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In other words, τMD is the longest time between τRB ≜  M ⋅ Tc (the time to refill the IB) and τiPU. If the check is passed, 

we may have either a correct or a wrong acquisition. Therefore, the receiver goes into a verification mode, which may 

include a long correlation test. At the end of the verification, it is reasonable to assume that the probability of wrong 

decision is close to 0. Hence, the case of wrong detection is characterized by a penalty-time, τpt ≜  k ⋅ M ⋅ Tc (see also 

[14]). In the case of correct acquisition (often referred to as a hit) the signal is detected and tracking is started. Fig. 4 

summarizes all the main stages of this detection strategy.  

 As illustrated, one acquisition attempt can end with just one of three mutually exclusive possible outcomes: missed 

detection (MD), or wrong detection (WD), or correct detection (CD). So, referring to the CD probability as PCD, to the 

WD probability as PWD, and to the MD probability as PMD, the following equality is verified 
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We can now associate a Markov chain to the iDU, and use it to compute the moment generating function (MGF) that is 

necessary to evaluate the mean and the variance of the acquisition time ([2], [13], and [14]). 

 Assuming Tc as our time unit, the ad-hoc Markov chain in the z-transform domain is depicted in Fig. 5, where each 

node represents one of the stages of the iDU and each edge is labelled by a transition probability multiplied by its time 

delay. More specifically, starting from the start node, the A-B edge is the IB filling stage, labelled z
M
 because its time 

interval is M Tc. After that, the iPU provides an estimate vector on which parity checks are carried out by the PCU, so 

the missed detection is represented by the B-B edge, labelled PMD z
m
 (where m is (2)), while the right parity is the B-C 

edge, labelled                         . Following on that line, the C node represents a verification mode that can confirm the 

CD with the C-end edge, labelled PCD / (1 – PMD) z
k M
, because the probability is PCD / (1 – PMD) and the verification 

stage time is τpt = k M Tc, or a WD can happen with PWD / (1 – PMD) z
k M
, on the C-D edge. In this last case, a new 

detection try is run: the D-D edge represents the parity failure (MD), while D-C is the case of right parity. We remark 

that the D stage corresponds to the B one, but is split to simplify the next calculations. 

 Computing the MGF, we simplify the flow graph of Fig. 5 as shown in Fig. 6, where 
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Fig. 3. Iterative detection unit (iDU) with iMPA. 
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Fig. 4. Main stages of the iDU. 
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Fig. 5. Markov chain of the iDU. 
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Fig. 6. Simplified flow graph of the iDU. 
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so the MGF is (using (4) equations) 
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we can check that (using (3)) U(1) = PCD / (1 – PMD – PWD) = PCD / PCD =1, as it should be. 

 The mean of the acquisition time is derived from (5) ([2], [13], and [14]) 
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and the variance is ([2], [13], and [14]) 
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Both these results ((6) and (7)) allow to evaluate the time performance of a coherent iDU with respect to the full parallel 

and serial search ones, as performed in the next section. 

IV. COMPARISON WITH PARALLEL/SERIAL SEARCH AND SIMULATION RESULTS 

This section compares the iDU to the full parallel and the serial search algorithms (respectively referred to as FPA and 

SSA). This comparison is performed in terms of detection performance, acquisition time, and implementation 

complexity. More specifically, the detection performance of each method is measured in terms of PWD, PMD, and PCD as 

a function of the signal-to-noise ratio (SNR ≡ Ec / N0). These curves are obtained by simulating the DS/SS 

communication system described in the section II. The time performance of each algorithm is characterized by the mean 

and the variance of its acquisition time. In particular, for the iDU, these parameters can be evaluated by (6) and (7). In 

case of a coherent SSA, considering that the dwell time is τD = M Tc, we have (see [14]) 
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where q is the number of cells to be searched that depends on the SSA update size (ie. if the update size is one-half chip 

q = 2 N, where N is the sequence period, [14]), and PFA is the false alarm probability. The mean and variance of the 

FPA acquisition time can be computed by the following equations (assuming τD = M Tc), 
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To complete the comparison of these algorithms, an analysis in terms of implementation complexity is necessary. This 

can be done by counting the number of sum-operators of each method per detection try and comparing these figures. In 

the case of the Min-Sum algorithm, we assume that a min-operator is approximately equivalent to a sum-operator as 

outlined in [19].  

 We will perform this comparison on the specific example of the m-sequence g18 = [1000201]8, with degree r = 18 

and period N = 262˙143. For the iMPA, at the receiver side (see Fig. 1), 1˙024 observations (M) are collected. 

Furthermore, the SSA threshold is λ = 0.85. About the graphical model used by the iDU, we refer to [15] and [16]. Our 

Tanner graph (TG) is built grouping a set of sub-TGs constructed using equivalent sparse polynomials (with only 3 

coefficients) of high order (more details are given in [15] and [16]). In this particular example a YRGM5 (stands for 

Yeung Redundant Graphical Model of order 5, [15] and [16]) is implemented and the number of iteration is 30.  

 Some simulation results are shown in Fig. 7. In particular, the PFA of the SSA is lower than the PWD and PMD of the 

iDU. Furthermore, it can be clearly neglected for SNR > –16 dB (PFA < 10
-9
). The detection probabilities of each 

algorithm (SSA, FPA, and iMPA) are given in Fig. 8. Of course, the best performance is provided by the MLA. The 

cross-over value SNR ≅ –13.8 dB splits the chart in two regions in which the iDU outperforms the SSA (SNR > –13.8 
dB) and vice versa (SNR < –13.8 dB).  

 A comparison between the acquisition times of the SSA and the iMPA detector is contained in Tab. 1. To provide a 

realistic scenario, we can suppose a chip time Tc ≈ 0.1 ÷ 1 µsec, that is typical of satellite positioning systems ( as GPS, 
[20], and Galileo System, [21]), and an iteration time Tit ≈ 1 µsec that can be considered a reasonable figure for the 
state-of-the-art of LDPC decoders. Therefore, ρ = Tc / Tit ≈ 0.1 ÷ 1, so we can consider as the worst case: ρ = 0.1. 
Furthermore, we assume that the penalty time is the same for all the detectors and its value is proportional to 10 times 

the number of observations M, so k = 10. Finally, for the SSA two typical values of q are considered: N and 2 N (it 

respectively means a search step of one chip or half a chip). All results contained in Tab. 1 are obtained considering the 

curves in Fig. 7 and Fig. 8 and the equations (6), (7), and (8). This table shows the huge gap in terms of the acquisition 

time between the iDU and the SSA. In particular, the iMPA detector has a mean time and a standard deviation about 10
5
 

times smaller than the SSA ones. This result is basically due to the q-factor that depends on the selected search step and 

on the sequence length. 
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Fig. 7. The SSA PFA vs the iMPA PWD and PMD. 
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Fig. 8. PCD of the iDU, the SSA, and the FPA. 

 

Tab. 1. Comparison of the acquisition time between the SSA and the iDU. 

SSA iDU (iMPA Detector) q = N q = 2 N 
SNR 

(dB) 
FA

P  
CD

P  
WD

P  
MD

P  
CD

P  iDU

SSA

µ
µ  iDU

SSA

σ
σ  iDU

SSA

µ
µ  iDU

SSA

σ
σ  

–12 < 10
-9
 ≈ 0.956 ≈ 0.0008 ≈ 0.0002 ≈ 0.999 7.89 10

-5
 3.07 10

-6
 3.95 10

-5
 1.53 10

-6
 

–13.8 < 10
-9
 ≈ 0.92 ≈ 0.07 ≈ 0.01 ≈ 0.92 7.86 10

-5
 2.67 10

-5
 3.93 10

-5
 1.33 10

-5
 

–14.4 < 10
-9
 ≈ 0.902 ≈ 0.155 ≈ 0.021 ≈ 0.824 8.31 10

-5
 4.12 10

-5
 4.15 10

-5
 2.06 10

-5
 



 

A similar comparison between the iMPA and the FPA is performed in Tab. 2 (considering Fig. 8 and (6), (7), and (9)). 

In this case, the FPA implementation is optimal in terms of the acquisition time performance, but the iDU tends to its 

performance. More specifically, it is evident the difference between the iDU standard deviation and that of FPA, due to 

the highest PWD and PMD of the iMPA detector. Nevertheless, increasing the SNR, both the iDU acquisition time 

parameters (the mean and the standard deviation) tend to reduce the gap with respect to FPA. This result still 

demonstrates that iMPA is a sub-optimal solution of the MLA in terms of time performance. 

 Coming to the issue of complexity, let us call CAlg the complexity of one detection algorithm (Alg is FPA, SSA, or 

iMPA). It is easy to prove that CFPA = M N = M (2
r
 – 1) = 268˙434˙432 and CSSA ≈ M = 1˙024. In case of the iMPA 

detector, the complexity strictly depends on the particular graphical model that has been built, and it is measured in 

agreement with the following equations 

 

 

( )min

2
,  where  

2

vn vn

edg vn MAX
vn cn

iMPA
cn cn cn cn

edg edg cn MAX

T N N I
C T T

T T N N N I

Σ

Σ Σ

Σ

 ≤ ⋅ ⋅ ⋅
= + 

≈ ≤ − ⋅ ⋅ ⋅

 (10) 

 

where       and       are the numbers of sum-operators of all variable/check nodes (a min is equivalent to a sum), Nvn and 

Ncn are the numbers of variable/check nodes of the TG,         and         are the mean numbers of edges per variable/check 

node. Using (10), CiMPA can be computed and reported in Tab. 3 in comparison with the other algorithms. Our analysis 

shows that the iDU complexity is considerably smaller than that of the MLA implementation, and, of course, 

considerably higher than that of the SSA. Therefore the final conclusion is that the iMPA detector is a good trade-off 

between the FPA and SSA, because it allows to have a rapid detection (that tends to the FPA acquisition time) and good 

performance, in terms of correct detection probability at low SNR, with a complexity lower than a full parallel 

implementation. 

V. CONCLUSIONS AND FUTURE WORKS 

In this work, a novel detection technique that exploits iMPAs to perform spreading code acquisition is analyzed. It 

basically uses the channel soft information as messages to be exchanged within a graphical model with cycles to 

estimate the transmitted LFSR sequence, and so evaluating its code delay. In particular the graphical model can be 

implemented manipulating the generating polynomial structure of the sequence, as shown in [15] and [16]. 

 The main feature that makes this algorithm very attractive is fast acquisition of long spread spectrum sequences. 

More specifically, the standard algorithms are not adequate to acquire these codes, because the full parallel 

implementation presents a rapid detection at a price of a high complexity, and a simple serial search results a low 

complexity algorithm but has a prohibitively long acquisition time. In this context, the iMPA detector is a good trade-

off between these two techniques, because its correct detection probability is equivalent that of the SSA, but its 

performance in terms of acquisition time tends to that of a full parallel implementation obtained with a much lower 

complexity.  

 These conclusions, together with those in [5], [15], and [16], demonstrate that the iMPAs can yield low-complexity, 

unaided fast acquisition for long LFSR sequences, approximating the MLA implementation. Nevertheless, many topics 

still remain to be investigated, such as the acquisition with joint rough estimation of carrier phase and frequency, the 

search of other graphical models that could introduce more benefits, and more detailed considerations on the hardware 

implementation. 

 

Tab. 2. Comparison of the acquisition time between the FPA and the iDU. 

FPA iDU (iMPA Detector) SNR 

(dB) 
CD

P  
WD

P  
MD

P  
CD

P  
iDU

FPA

µ
µ  

iDU
σ  

FPA
σ  iDU

FPA

σ
σ  

–12 1 ≈ 0.0008 ≈ 0.0002 ≈ 0.999 ≈ 1.027 298.742 0 Y 

–13.8 ≈ 1 ≈ 0.07 ≈ 0.01 ≈ 0.92 ≈ 1.099 3˙020.783 ≈ 0 Y 

–14.4 ≈ 0.9995 ≈ 0.155 ≈ 0.021 ≈ 0.824 ≈ 1.204 4˙995.884 ≈ 251.997 19.825 

 

Tab. 3. Comparison of the implementation complexity between of the iDU, the FPA, and the SSA. 

vn
N M≡  cnN  vn

edgN  cn

edgN  iMPA
C  iMPA

SSA

C
C

 iMPA

FPA

C
C

 YRGM5 

30
MAX

I =  
1˙024 5˙010 14.68 3 1˙352˙839.2 1˙321.132 1

198.42
 

 

vnTΣ
cnTΣ

vn

edgN cn

edgN
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