
SOFT-REC: A LOW-COST GPS RECEIVER FOLLOWING THE
SOFTWARE RADIO PARADIGM

Fabio Principe (1) , Carla Terzi (2), Marco Luise (1), and Marco Casucci (2)

(1)Dipartimento Ingegneria dell’Informazione

University of Pisa
Via G. Caruso, 56126 Pisa (Italy)

Email: marco.luise@iet.unipi.it, fabio.principe@iet.unipi.it

(2)INTECS s.p.a.
Via U. Forti, 5 Loc. Ospedaletto

56121 Pisa (Italy)
Email: terzi@pisa.intecs.it, casucci@pisa.intecs.it

ABSTRACT

This contribution describes an innovative approach to the design of a low-cost
GPS/EGNOS receiver. In particular, the architecture of the receiver follows the well-know
paradigm of the software radio. Currently, a typical GPS receiver, ranging from the hand-
held version to the more sophisticated ones, uses a dedicated hardware circuit to imple-
ment all the signal processing algorithms. The SOFT-REC (stands for software-receiver)
completely changes this approach, transferring all the ad-hoc hardware processing into a
set of software algorithms running in real-time on a standard high-end PC integrated with
a COTS (Commodity Off The Shelf) L1 frequency GPS receiver digital front-end.

1. INTRODUCTION

We describe in this paper the implementation of a low-cost GPS/EGNOS software receiver
intended for land vehicles (trains). We remark that our receiver is fully re-programmable
and re-configurable [2], allowing complete adaptability to several cases, from standard ap-
plications to high-performance ones. The receiver architecture can be also regarded as a
suited baseline to come to a fully reprogrammable GPS/GALILEO receiver. An ana-
log/digital front-end and a standard PC Unit are the only hardware parts that we need to
realize the GPS/EGNOS SOFT-REC (software-receiver).

After this introduction, the second section of the paper illustrates the hardware im-
plementation of the SOFT-REC, focusing the attention on the front-end features. The third
section gives an idea of the real-time software architecture, its features and performances.
In the fourth section we give a general overview of our signal processing library, showing
some simulation results, and final conclusions are presented in the fifth section.

2. SOFT-REC GENERAL ARCHITECTURE

The overall architectural scheme for the SOFT-REC prototype is shown in Fig.1. As is
seen, the receiver is made up of a GPS/EGNOS antenna, an analog/digital front-end and a
Personal Computer (PC). The analog/digital front-end performs a down-conversion from
Radio Frequency (RF) to an Intermediate Frequency (IF) and then samples the IF signal on
the L1 carrier. After A/D conversion, the PC receives via a USB port a digital signal that can
be processed obtaining GPS/EGNOS data which may be used by a Navigation Library to
estimate the user position.

Fig. 2 depicts a detailed scheme of the front-end. The RF filter selects L1 and cuts off
the L2 carrier. The subsequent mixer performs down conversion from RF to IF of the L1
carrier. At the output we obtain a bandpass signal at the IF of 15.42 MHz (fIF). The local
oscillator frequency (fLO) is thus 1560 MHzLO RF IFf f f= − = .
The IF filter has a bandwidth of 2 MHz (BIF). The programmable ADC performs the signal
sampling and digital binary coding. To find out the correct value for the sampling fre-
quency (fS), we observe that from the Band Sampling Theorem, we must have

()

2 32.84 28.84 8.21
1 2 1
S IF IF

S IF IF

k f f B
k

k f f B k k
⋅ ≥ ⋅ +⎧⎪ ⇒ < ⇒ <⎨ − ⋅ < ⋅ − −⎪⎩

 (1)

where k is an integer. The resulting ranges for the sampling frequency are shown in Tab.
Table 1. If we choose k = 6 with 1 bit quantization, we obtain a good trade off between ac-
curacy and the resulting data rate to be handled by the PC. With one-bit quantization and fs
= 5.5 MHz, we get a data rate of 5.5 Mbps that can be easily transferred via a standard USB
1.0 port. Also, the number of samples per chip is / 5.3S cf R 8≈ that is more than adequate
for our signal processing functions. We could easily find a COTS GPS front-end complying
with these parameters (Accord’s “GPS Signal Tap”), but we explicitly remark here that the
design of a custom front-end like the one in Fig. 2 is straightforward and very low-cost.

 GPS Antenna

Analog/Digital Front-End

Low Noise
Amplifier RF Filter

RF/IF
Down

Converter

Local
Oscillator

ADCIF Filter

Signal
Buffer

USB port

Sampling Clock
programmable from PC

Standard Personal Computer

Digital Front-End

USB

PC

GPS Antenna

Fig.1. SOFT-REC Hardware Architecture Fig. 2. Analog/Digital Front-End Scheme

Table 1. fS range.

k Min fS (MHz) Max fS (MHz)
1 32.84 ∞
2 16.42 28.84
3 10.947 14.42
4 8.21 9.6133
5 6.568 7.21
6 5.4733 5.768
7 4.6914 4.8067
8 4.105 4.12

3. SOFTWARE DESCRIPTION

In addition to the standard functions of Man-Machine Interface (MMI) and general house-
keeping, the SOFTREC software section has to perform all real-time functions related to
signal processing. In particular, the parallel processing of GPS/EGNOS signals implies the
management and elaboration of great amounts of data in real time then an underlying man-
agement layer, that is constituted by the Operating System primitives, is needed. In order to
support the real-time behavior of the receiver, a real-time operating system has been cho-
sen, i.e. RTLinux. Regarding the development tools, good performances were attained by
using the C programming language compiled with early versions of gcc. The MMI was on
the contrary implemented by Tcl/Tk language.

3.1. RTLinux

Real-Time Linux (RTLinux) is a small hard real-time kernel that can run the Linux kernel
as its lowest priority thread. RTLinux extends the standard UNIX programming environ-
ment to real-time problems. From the programmer's point of view, RTLinux adds a special
real-time process to Linux and allows programmers to insert real-time threads and signal
handlers into that process. The real-time software can talk to ordinary Linux processes us-
ing RT-FIFOs (which are like ordinary pipes), shared memory and signals.

3.2. SOFT-REC software architecture

A high level presentation of the architecture of the SOFT-REC is represented in Fig. 3. The
yellow bullets represent software modules, and the green boxes represent data exchange
buffers. The GPS/EGNOS Digital Front End is illustrated as an orange box.

User info

MMI

GPS / EGNOS
Digital Front

End

Data
module

Sample Buffer

Acquisition
module

Tracking
module

Navigation Data
Buffer

Positioning
module

Channel 1..12

Samples

Navigation
module

Satellite
Visibility
Prediction

User info

MMI

GPS / EGNOS
Digital Front

End

Data
module

Sample Buffer

Acquisition
module

Tracking
module

Navigation Data
Buffer

Positioning
module

Channel 1..12

Samples

Navigation
module

Satellite
Visibility
Prediction

Fig. 3. Software Architecture

Basically, the architecture can be described as a multithreaded and concurrent exe-

cution of the channel signal processing algorithms along with the modules responsible for
the sampled data acquisition, the MMI, the positioning and the module implementing the
satellite visibility prediction, that is the software that calculates the visible satellites starting
from the provided rough user position. In the following some details are provided for each
module in the figure.
3.2.1. Data Module
The Data Module is in charge of acquiring the samples from the digital front-end into main
memory. It has to be synchronized with the rate at which the front-end outputs its data, in
order not to lose any of the incoming samples. This component also exports the routines to
read or write data samples buffer with bit-wise resolution.
3.2.2. Channel Module
The Channel Module is responsible for implementing the GPS-EGNOS channels signal
processing algorithms. It is the core of the SOFT-REC application, and certainly the heavi-
est part of the system as regards the computational burden. In optimal conditions, up to 12
GPS channels plus 2 EGNOS channels shall be tracked, and therefore the real-time proper-
ties of the channel modules have to be precisely defined and implemented, as regards the
real-time interaction with the various data exchange buffers and the time and computational
power allocation.
3.2.3. Acquisition Module
The Acquisition module is in charge of finding the signal of a certain satellite. It operates
on a block of samples to extract the C/A code start and the carrier Doppler frequency, in-
formation used subsequently by the tracking software in order to demodulate the signal.
3.2.4. Tracking module
The Tracking Module is responsible for demodulating the GPS-EGNOS signal. It uses the
data provided by the Acquisition module in order to track the signal of a certain satellite
and the variations of some of its parameters, such as the variation of the carrier frequency
due to the Doppler effect.

3.2.5. Navigation Module
This component implements Navigation procedures, on the basis of outputs coming from
Tracking algorithms. The relevant subframes are processed and ephemeris data is extracted
as well as clock and satellite health information.
3.2.6. Positioning
The Positioning Module calculates an estimation of the user position, given the data pro-
vided by the Navigation Modules, read from the Navigation Data Buffer. R/T FIFO queues
are opened towards the user-space MMI graphical interface as communication resources.
3.2.7. MMI Module
The MMI is responsible for displaying all the SOFT-REC output and system state data to
the user. Moreover, it is in charge of acquiring the user inputs and commands. This compo-
nent runs at user level, using the time slices left by R/T tasks. It periodically reads from R/T
FIFO queues provided by Positioning module and shows information about the current
SOFT-REC operational mode.
3.2.8. Satellite Visibility Prediction Module
This component also runs in user-space and provides the routines needed to evaluate ex-
pected satellites in visibility and a coarse estimation of the Doppler shift basing on the
rough current user position. After having executed (successfully or not in determining the
needed information) it hands over the control to RTLinux module which is in charge of
initializing the whole software tasks.
3.2.9. Software Start-up and Modules Characterization
As above mentioned, regarding the Operating System characterization, the signal process-
ing components have to be implemented as RTLinux modules i.e. object files containing
routines and resources, whereas the MMI and the Prediction of Visible Satellites have not
strict real-time constraints and they can be run under Linux user space. The latter are im-
plemented as common executable files. In particular, at start-up time the correct module
activation order has to be respected. After the Satellite Visibility Prediction has executed an
initialization module takes the control. The system start-up policy is to load each module
into the kernel, before starting it. When loading a module, its public resources are accessi-
ble to the others, including, where applicable, the code of the thread implementing the pe-
culiar module functionality. In this way, loading modules does not imply starting real-time
threads. The initialization component creates all threads referring to the relevant public
code and starts all of them assigning the right order and priority.

4. SIGNAL PROCESSING LIBRARY

All signal processing functions needed to perform user position estimation were imple-
mented through real-time C procedures integrated in the general software described in the
previous section. To be more specific, we will start from a description of the baseband
equivalent of the IF received signal:

() () () (){ } ()

() () (){ } ()
1

2

2

Re

 Re

IF D

IF D

j f f t
L BB

j f f t
R I

s t s t e n t

r t j r t e n t

π τ φ

π θ

τ τ

τ τ

− + ⋅ + +⎡ ⎤⎣ ⎦

− + +⎡ ⎤⎣ ⎦

+ = + ⋅ + =

= + + ⋅ + ⋅ +⎡ ⎤⎣ ⎦
 (2)

where ()2 IF Df fθ π τ φ+= + , ()n t is AWGN (Additive White Gaussian Noise), τ is the

propagation delay fD, is the carrier Doppler Shift, and ()BBs t is the (filtered, baseband)
GPS signal. The main cause of the Doppler Shift is satellite motion. As in [1]-[2], the car-
rier Doppler Frequency range ranges from -5000 Hz to 5000 Hz, while the C/A code Dop-
pler Shift is about 3.2 Hz.
 We now give a short description of our signal processing library. In particular we
describe the two main stages, namely signal acquisition and tracking, and we discuss the
main related processing algorithms that we implemented.

4.1. Signal Acquisition

When the SOFT-REC receiver is turned on, it runs an algorithm for the prediction of satel-
lite in visibility based on a very rough indication of the receiver position. In this way it is
possible to load the right codes and to have a coarse estimation of the Doppler Shift, avoid-
ing an exhaustive search during the acquisition stage in the time and frequency domains.

When the prediction phase is over, coarse code acquisition stage is started. Fig. 4
depicts the processing architecture of a single SOFT-REC channel (each channel is identi-
fied by its own C/A code). From this picture it is easy to recognize the following modules.
4.1.1. Prediction of Satellites in Visibility
This satellite prediction algorithm is run when the SOFT-REC is turned on. The user inputs
its coarse position, date and time, and the visible satellites are identified. This is done using
stored almanacs than can be periodically downloaded from the Internet.

Analog/Digital
Front-End

Σ

Σ

Σ

E P L

Code Shifter

I-Q Ch.

NCO

DCO

I Channel

Q Channel

2 i

2 i

2 i Acquisition
Logic

τ̂

Dopp. Shift

Code Delay

()
1

1 W

iW =
∑

()
1

1 W

iW =
∑

()
1

1 W

iW =
∑

()
1

1 M

iM =
∑

()
1

1 M

iM =
∑

()
1

1 M

iM =
∑

ˆ
Df

ˆ2 Dj f iTe π

Fig. 4. Acquisition Stage

4.1.2. Baseband Module
This module implements a down-conversion from IF to near-baseband of the digital signal.
From (2) and remembering that the front-end output is a sampled and 1 bit quantized signal,
the baseband down-converter implements

() () ()

() () ()

'

'

u u cos 2

u u sin 2

R s IF s IF s

I s IF s IF s

r kT s kT f kT

r kT s kT f kT

τ π

τ π

⎧ = + ⊗⎡ ⎤ ⎡ ⎤⎪ ⎣ ⎦ ⎣
⎨

= + ⊗

⎦

⎪ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎩

 (3)

where k = 0,1,2,…, ⊗ is XOR operator, Ts is sampling time and

 [] 1, 0
u k

0, 0
k
k
≥⎧

= ⎨ <⎩
. (4)

4.1.3. Despreading/Accumulation Module
In this stage we perform despreading with ranging code and a preliminary accumulation. In
particular we have three branches, with a shifted code replica each: the early, prompt and
late (e/p/l) versions. The baseband received signal is thus correlated with these three repli-
cas on an accumulation (integration) period equal to 16 or 32 samples. This preliminary
integration allows to decrease the processing rate of the signal with basically no impair-
ments due to Doppler shift.
4.1.4. Bidimensional Serial Code Acquisition Module
The last module is a serial code acquisition unit [5]. This unit performs triple correlation of
the received signal with the e/p/l codes as above, but also performs Doppler Shift pre-
compensation with a 1 kHz step, allowing a two-dimensional search: in the time and fre-
quency domains. This allows to hand over to the tracking stage with a residual Doppler
Shift smaller than 500 Hz. We show in Fig. 5 a pictorial representation of the bi-
dimensional search result in the form of a plot of the correlation results as a function of
time and frequency (delay and Doppler shift).

4.2. Tracking Stage

When the acquisition stage is over, tracking phase is executed. The channel architecture
changes its structure, it is shown in Fig. 6. Practically in this stage the receiver has to track
the C/A code and to recovery frequency residual offset and carrier phase. These operations
are implemented respectively by a 1st order DLL (Delay Locked Loop) [3] and FLL (Fre-
quency Locked Loop) [4] and 2nd order PLL (Phase Locked Loop) [4].

Fig. 5. Bidimensional Coarse Code Acquisition

Analog/Digital
Front-End

Σ

Σ

Σ

E P L

Code Shifter

NCO

DLL
Discriminator

Early

Late

I-Q Ch.

FLL Costas
PLL

DCO

I Channel

Q Channel

Navigation
Processing Unit

(NPU)

()e k

k̂υ k̂θ()ˆˆ2 k kj iTe πν θ+

()
1

1 W

iW =
∑

()
2

12

1 M

iM =
∑()

1

11

1 M

iM =
∑

Fig. 6. Tracking Stage.

4.2.1. Delay Locked Loop (DLL)
We used a standard 1st order non-coherent early-late DLL, whose sample output is shown in
Fig. 7.
4.2.2. Carrier Frequency Locked Loop (FLL)/ Phase-Locked Loop (PLL)
This module implements a 2nd order PLL aided by a 1st order FLL. In particular this unit
estimates and compensates for the residual Doppler Shift, and phase-locks onto the carrier
phase to perform coherent data detection of the BPSK navigation data. The frequency loop
is pretty standard, with a digital frequency discriminator given by

 () { }1Im k ke k x x∗

−= ⋅ (5)

Fig. 8 shows an example of frequency estimation with 1 Hz Loop Bandwidth (BL).
The carrier phase locking loop is the standard 2nd order decision-aided Costas PLL shown
in Fig. 9. The phase error is computed as follows:

 () () ()sgnI Qe n w n w n⎡ ⎤= ⋅ ⎣ ⎦ (6)

where ()Iw n and ()Qw n are the in-phase and quadrature components of ()w n , respec-
tively.
4.2.3. Navigation Library
During tracking, this library allows to decode the GPS subframe and to perform navigation.
In particular, the user position is estimated through a standard iterative minimum mean-
square error solution of the positioning equations starting from the pseudorange measure-
ments combined with corrective parameters taken from GPS ephemeris.

0.28

0.24

0.20

0.16

0.12

0.08

0.04

0.00

-0.04

C
od

e
Ti

m
in

g
Er

ro
r

200180160140120100806040200

Time (sec)

 ∆τ/Tc
 DLL Error

C/N0 = 45 dBHz
1st Acc. = 275, 2nd Acc. = 25

Fig. 7. Code Timing Estimation Sample

500

450

400

350

300

250

200

150

100

50

0

Fr
eq

. E
rr

or
 (H

z)

3.63.22.82.42.01.61.20.80.40.0

Time (sec)

C/N0 = 45 dBHz
BL = 1 Hz

1st Acc. Dim = 125

Fig. 8. Carrier Frequency Acquisition Sample

Look-up
Table

Loop
Filter

PED

BPSK
Hard

Decoder

w(n)

e(n)()ˆ nθ

()ˆj ne θ−

ξ(n)

ˆ nc

Fig. 9. Carrier PLL Architecture

5. CONCLUSIONS

The aim of this paper is showing how to implement a low-cost GPS/EGNOS Software Re-
ceiver, with characteristic of full re-programmability and re-configurability. The analog
front-end used here is just an off-the-shelf component intended for research, but what was
shown here is that the overall design is actually independent of the front-end characteristics.
Rather, the design focus was on the architecture and the optimization of the real-time soft-
ware to perform the different signal processing functions for positioning. Custom realiza-
tion of the front-end would lead to a very low-cost implementation of the whole receiver,
and this design approach paves the way for the extension of the receiver to GALILEO sig-
nals.

REFERENCES

[1] E. Kaplan, “Understanding GPS: Principles and Applications”, Artech House, 1996.
[2] J. Bao-Yen Tsui, “Fundamentals of Global Positioning System Receivers a Software

Approach”, Wiley-Interscience, 2000.
[3] R. De Gaudenzi, M. Luise, R. Viola, “A Digital Chip Timing Recovery Loop for

Band-Limited Direct-Sequence Spread-Spectrum Signals”, IEEE Transactions on
Communications, Vol. 41, No. 11, November 1993.

[4] U. Mengali, A. N. D'Andrea, "Synchronization Techniques for Digital Receivers
(Applications of Communications Theory)", Plenum Publishing Corporation, 01
November, 1997

[5] M.K. Simon, J. K. Omura, R. A. Scholtz, B. K. Levitt, “Spread-Spectrum Commu-
nications Handbook”, McGraw-Hill, 1994.

