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Abstract— A recent study, [1], demonstrated that iterative
message passing algorithms (iMPAs) can be applied to rapidly
acquire pseudo-noise (PN) sequences with low-complexity. Fur-
thermore, a second work, [2], showed that significant benefits
can be obtained using redundant graphical models, in case
of linear feedback shift register (LFSR) sequences with sparse
generator polynomials. Starting from these results, we address
the problem of fast detection to Gold codes and LFSR sequences
with dense generators. We will prove that these two aspects are
closely related, and that, constructing redundant Tanner Graphs
(TGs) from sparse higher-degree generator polynomials, it is
possible to rapidly acquire these PN sequences at low signal-to-
noise ratio (SNR), and with a low complexity. We also propose
another distinct approach for acquiring Gold sequences using
iterative methods based on a hierarchical model for the two LFSR
generators that comprise a Gold code.

I. INTRODUCTION

THE primary function of a direct-sequence spread-
spectrum (DS/SS) receiver is to despread received sig-

nals. This is operation accomplished in two stages. The first
one, referred to as PN acquisition ([3], [4], and [5]) produces
a coarse alignment of the incoming PN signal and its local
replica. Then, starting from this rough alignment, a fine
synchronization is realized and maintained by a delay locked
loop unit. This second stage is defined PN tracking ([3],
[4], [5]). Therefore, the acquisition stage is the most critical
point to guarantee a rapid and correct synchronization between
receiver and transmitter.

The standard techniques used to detect PN sequences are:
full parallel search, serial search (see [3]), and hybrid search
([3], [4]). The first method is the maximum-likelihood al-
gorithm (MLA), [3], which is often infeasible due to high
complexity, especially in case of long sequences. A simple
serial search has a low-complexity, but its acquisition time
is often prohibitively long. The hybrid search is a trade-off
between these two methods.

In this context, a new technique to acquire PN codes has
been, recently, presented in [1]. This method is based on
running an iMPA on graphical models (a specific example
being a Tanner Graph, TG [6]) with cycles ([7], [8]). Related
research applying message passing (MP) algorithms to the
acquisition problem was conducted independently in [9], and
[10]. Instead of correlating the received signal with a local PN

replica (as in all standard methods), this algorithm uses all the
information, provided by the incoming signal, as messages to
be run on a predetermined TG, thus approximating the ML
method. This results a sub-optimal algorithm, that searches
all possible PN phases in parallel with a complexity typically
lower than the full parallel implementation, and an acquisition
time shorter than the simple serial algorithm. Furthermore, fo-
cusing on LFSR sequences with sparse feedback polynomials,
it was shown in [2] that significant improvements in terms
of acquisition probability can be obtained using redundant
graphical models (RGMs) made up of a set of redundant parity
check equations.

In this paper we address the problem of fast acquisition
of Gold sequences and LFSR sequences with non-sparse
generators. Indeed, it is possible to demonstrate that these two
problems are closely related, because Gold codes can be de-
scribed by high-order LFSR (typically non-sparse) generators
(see [4], [5], and [11]). This allows us to formulate a unified
treatment on LFSR sequence acquisition using iMP detectors.
The approach considered is to search for non-primitive higher-
degree generator polynomials, that are sparse, and use these
to construct RGMs for running iMPAs. Therefore, we present
a simple method for searching for such sparse non-primitive
generators and show the benefits of using these in redundant
TGs through computer simulations. We also propose another
distinct approach for acquiring Gold codes using iterative
methods based on a hierarchal model for the two LFSR
sequences that comprise a Gold code.

Furthermore, in order to evaluate the performance achiev-
able using the proposed models, the GPS/SBAS1 Gold se-
quences [12] have been simulated. The results obtained show
good acquisition probability at low-SNR and low complexity,
in agreement with the conclusions of [1], [2], but for a broader
class of PN sequences.

The remainder of this paper is structured as follows: section
II introduces the DS/SS signal model used to measure detector
performance, and gives a brief overview on iMPA. Section
III shows the equivalence between LFSR sequences and Gold
codes. RGMs, generated by high-degree sparse polynomials,

1GPS stands for Global Positioning and SBAS stands for Satellite Based
Augmentation Systems.
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and their performance are discussed in Section IV. Section V
describes hierarchical models to acquire Gold codes. Finally
conclusions and suggestions for future work are reported in
section VI.

II. SIGNAL MODEL AND DETECTION ALGORITHM

At the receiver, a basic and standard characterization of a
DS/SS signal, during the acquisition stage, is

zk =
√

Ec · yk + nk =
√

Ec · (−1)xk + nk (1)

where zk is a noisy sample received by detection unit, yk =
(−1)xk is an antipodal modulation of xk ∈ {0, 1} that is a PN
sequence chip (sequence period is N ), and nk is an additive
white gaussian noise (AWGN) mean value 0 and variance
N0/2. The model in (1) is diagrammed in Fig. 1. In other
words, our assumptions are to acquire a pilot signal in case
of coherent detection. This is a simplified representation of a
DS/SS system, because it does not consider carrier frequency
and phase offset, jammers, chip over-sampling, etc., but it is in
agreement with the basic treatments reported in [1], [2], and
[3].

The pattern, reported in Fig. 1, is made up of: a PN
Sequence Generator, that outputs a predetermined PN se-
quence (LFSR sequences will be considered), a channel, that
introduces a propagation delay (∆ > 0) and AWGN, and a
detection unit that acquires incoming signals, estimating their
phase delay.

As described in [3], [4], and [5], all standard acquisition
algorithms operate by correlating received signals with their
shifted local replicas, until the right alignment is obtained. In
this way, sequence delays can be directly evaluated from the
local shifting.

A different approach is proposed in [1]. Consider a vector
of M observations, z, the MLA detector can be formulated as

ŷ = arg max
yi

[p(z|yi)]

where yi is a vector that contains M shifted chips of the
transmitted PN sequence, and p(z|yi) is the likelihood func-
tion of yi and z. In other words, it estimates the shifted
sequence (among N possible shifted versions) that maximizes
the likelihood function. Therefore, an acquisition problem is,
definitely, similar to a decoding problem, [4].

Exploiting the experience of iterative decoding of modern
codes ([13], [14]), the ML estimation can be implemented
by a MPA run on a graphical model without cycles (a tree
graph). These optimal algorithms are often too complex to
implement, so graphical models with cycles (e.g., TGs) are
often used in practice. Indeed, these cyclic models yield sub-
optimal solutions with lower complexity and it has been
experimentally observed that, with proper model design, the
performance can be close to that of the MLA. These graphical
models are, basically, made up of sets of variable nodes,
directly associated to incoming soft information, and check
nodes, that identify all the parity equations (local constrains).
Unfortunately, a systematic method for designing the best
graphical model for a given problem does not exist.

Fig. 1. DS/SS signal model.

Complete treatments on standard MPAs are reported in [6],
[7], [8], and [15]. We simply add that, an iMPA, roughly,
passes soft information between nodes in its TG, and each
iteration ends when all nodes are activated. For this reason,
in order to correctly implement an iMPA, one must define its
activation schedule, which is the order that all variable and
check nodes are activated, including when the algorithm is
terminated. Typically, these algorithms end either when their
estimated vectors verify all parity checks or when the max
number of iteration, Imax, is obtained.

The last step is to define the processing used to perform the
message updating. As reported in [7], [8], and [15], there are
two main algorithms: Sum-Product, and Min-Sum algorithm.
We only consider the Min-Sum algorithm (MSA) version
because it is simple and does not require an estimate of Ec/N0.

III. M-SEQUENCES AND GOLD CODES

LFSR sequences are implemented by a simple r-stage shift
register (SR) with a linear combination of its elements in a
feedback path. A general Fibonacci representation, [3], of
these sequences is depicted in Fig. 2. As the picture shows, at
generic time k, assuming that xk is the SR output and xk+i

(with i ∈ [0, r]) is the content of the ith register, the following
parity constraint is satisfied

0 = gr · xk ⊕ gr−1 · xk+1 ⊕ gr−2 · xk+2 ⊕ . . .

. . . ⊕ g2 · xk+r−2 ⊕ g1 · xk+r−1 ⊕ g0 · xk+r

=
r⊕

i=0

gr−i · xk+i (2)

where ⊕ is modulo-2 addition and gi ∈ {0, 1}, 0 6 i 6 r are
feedback coefficients (also referred to as taps). A common way
to represent a r-stage LFSR is by its generating polynomial,
that contains its tap configuration, as

P (D) = g0 + g1 ·D + . . . + gr−1 ·Dr−1 + gr ·Dr

=
r∑

i=0

gi ·Di (3)

where D is the delay unit, and r is the polynomial degree. Of
course, for a given length r, g0 and gr are always 1.

M-Sequences are a subset of these sequences, because their
generating polynomials are primitive polynomials (see [3]).
This characteristic implies that their period is the maximum
achievable with a r-stage LFSR generator (referred to as
maximal LFSR sequences too). Hence, let N be the period
of a r-stage m-sequence, its value is N = 2r − 1. Another
consequence of this property is that these sequences are
univocally identified by their generating polynomials, because
the initial word of their SRs (except for zero word) only



3

Fig. 2. Fibonacci representation of a r-stage LFSR generator.

produces an initial sequence shifting (also named initial code
phase).

Because of these features, maximal LFSR sequences have
been successfully employed in a wide range of SS systems,
and they are also used to generate other spreading sequences
– e.g., Gold codes.

Gold sequences are very common in code division multiple
access (CDMA) systems, because they offer very low cross-
correlation values, fundamental to reduce interference prob-
lems in multi-user applications ([3], [4], [5], and [11]).

These codes are generated by modulo-2 addition of a
preferred pair of m-sequences with the same period, N (see
also [11]). An example of Gold generator is reported in Fig. 3.
It is a simplified representation of the GPS/SBAS Gold code
generator, [12]. Of course, the addition is made chip by chip
by synchronous clocking. In this way, the two code generators
maintain the same phase relationship and the generated code
has the same period, N , of the two initial m-sequences.
Furthermore, for a fixed preferred pair of maximal LFSR
sequences, a set of N + 2 different Gold codes (including
the two generating m-sequences) can be obtained by varying
the initial state of the two generating SRs ([11] and [4]).
For example, in the case of GPS/SBAS codes (Fig. 3), where
N = 1023, there are 1025 different Gold sequences.

There also exits an equivalent way for producing Gold
sequences using a single higher-order LFSR generator. Indeed,
as demonstrated in [11], a Gold code can be generated by
a r-stage LFSR unit (the scheme is in Fig. 2) with the tap
configuration

P (D) = Pc′(D) · Pc′′(D) (4)

where Pc′(D) and Pc′′(D) are the polynomials that specify the
feedback connections of the two q-stage SRs, where q = r

2 ,
that output the generating m-sequences c′ and c′′ (as shows in
Fig. 3). For example, in case of GPS/SBAS Gold sequences,
the two m-sequence polynomials are

Pc′(D) = D10 + D3 + 1 (5a)

Pc′′(D) = D10 + D9 + D8 + D6 + D3 + D2 + 1 (5b)

q = 10 implies r = 2 ·q = 20. From (4), the high-order LFSR
(or Gold generating polynomial) is

P (D) = D20+D19+D18+D16+D11+D8+D5+D2+1 (6)

this important result allows Gold codes to be treated as LFSR
sequences.

The equivalent LFSR for a Gold sequence typically has
a generator that is not sparse. Thus, the previously studied
methods are not directly applicable. In the following section
we describe how non-primitive, sparse, generators for these
LFSR sequences can be found and used to provide effective
iMPAs.

Fig. 3. GPS/SBAS Gold generator.

IV. GRAPHICAL MODELS AND SIMULATION RESULTS

This section is divided in two parts. The first one describes
the way to design graphical models with redundancy, while
the second part shows the benefits achievable using redundant
graphical models (RGM) generated by high-degree sparse
polynomials.

A. Redundant Tanner Graphs

A graphical model (or TG) can be mathematically described
by its parity matrix, that contains all the edges between its
variable and check nodes. In other words, assuming that the
jth column is directly associated with the jth variable node
and that the ith row correspond to the ith check node, the
matrix element hi,j is 1 only if the ith check node and the
jth variable node are connected, otherwise hi,j = 0.

Now, in agreement with [1], several TGs can be generated
in function of the particular LFSR sequence to be acquired.
Nevertheless, the simplest and most general way to build
graphical models is based on generating polynomials of LFSR
sequences. Indeed, considering (2) and (3), it is clear that each
generating polynomial can identify a set of parity checks, that
can be used to construct a simple TG. So, its parity matrix is

H =




gr · · · g0 0 · · · · · · 0
0 gr · · · g0 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 gr · · · g0 0
0 · · · · · · 0 gr · · · g0




Nr×Nc

(7)

where Nr = M−r is the number of rows (or number of parity
equations), Nc = M number of columns, r is the generating
polynomial degree, M is the number of incoming observations
(received soft information), and gi (with 0 6 i 6 r) is the
ith polynomial coefficient. In the (7), each row is a shifted
repetition of the polynomial vector (p = [gr · · · g0], associated
to P (D)) of one column. We refer to this TG as a basic
graphical model (BGM).

The regular structure of the BGM may cause the associated
iMPA may perform poorly [1], [8], [15]. Redundant graphical
models (RGMs) have been introduced to alleviate this effect.
They are, roughly, made up of a set BGMs that are put
together to form one big TG. Each BGM is based on one
equivalent generating polynomial of the same LFSR sequence
to be detected. The use of such redundancy has been shown
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to improve performance when each BGM has poor cycle
structure.

Consider a set of n + 1 equivalent generating polynomials
that enforce the same LFSR sequence structure. A RGM can
be defined by simply grouping all the BGMs generated by
these polynomials (as shown in (7)). The final parity matrix is

HRGM =




H0

H1

...
Hn




N ′
r×N ′

c

(8)

where N ′
r and N ′

c are, respectively, the number of rows and
columns. They are computed as

N ′
r = [(n + 1) ·M ]−

n∑

j=0

rj

N ′
c = M

where M is the number of observations, and rj (with 0 6 j 6
n) is the degree of the jth equivalent polynomial.

An interesting family of RGMs was introduced in [2]. It is
based on the following Galois field property (see [3])

[P (D)]2
n

= P
(
D2n

)

where P (D) is a LFSR generating polynomial. Therefore,
fixed n, a set of equivalent high-degree generating polyno-
mial is identified by: P

(
D2

)
, P

(
D4

)
, · · · , P

(
D2n)

. Each
polynomial can generate its BGM (from the (7)), and the union
of all these BGMs produces a RGM (from the (8)) of order
n (n = 0 clearly means a RGM made up of only one BGM
based on P (D)). Furthermore, n is selected in agreement with

r0 · 2n 6 M − 1 ⇒ n 6 K · log
(

M − 1
r0

)
(9)

where r0 is P (D) degree, M is the number of received
observations, and K = [log(2)]−1. In other words, n is the
largest integer that verifies the (9) inequality. We define these
graphical models Yeung-RGM of order n (also pointed out
YRGMn).

B. Equivalent Sparse Polynomials with High-Degree

As demonstrated in [2], YRGMs offer great benefits in
terms of acquisition probability at low-SNR, in the case of
sparse generating polynomials (i.e., with only 3 or 4 nonzero
coefficients). However, for dense generating polynomials (i.e.,
more than 4 nonzero coefficients) experiments suggest that
poor performance is obtianed using TG models. This problem
is common to many m-sequences and Gold codes that, having
a dense polynomial, cannot be efficiently acquired using
iMPAs on YRGMs.

In order to address this problem, the key idea is to find
equivalent higher degree generating polynomials that are
sparse and use these as BGMs to build new RGMs, following
(7) and (8). These models will be denoted by adding the super-
script esp, to identify RGMs generated by equivalent sparse
polynomials of higher degree – e.g., RGMesp. Furthermore,

we will show these RGMsesp provide better performance and
lower complexity than YRGMs generated by initial dense
polynomials. Now the problem is to search and identify these
high degree equivalent polynomials with 3 or 4 nonzero
coefficients. This result can be achieved by linear combination
of the initial generating dense polynomial with its delayed
versions until its high degree sparse versions are obtained.

An example is useful to well explain this procedure and il-
lustrates the potential improvements. Consider the m-sequence
identified by the following dense generating polynomial

P (D) = D12 + D11 + D9 + D7 + D6 + D5 + 1

with octal representation is [15341]8. A equivalent sparse
polynomial can be computed as 2

Pesp(D) = P (D) · [D19 + D18 + D17 + D15 + D14 + D13

+ D12 + D10 + D8 + D6 + D5 + D2 + 1]
= D31 + D2 + 1

with octal representation is [20000000005]8. It is evident
that Pesp(D) is more sparse than P (D) and its degree is
higher. So, Pesp(D) can be used as BGM to generate a
YRGMesp of order n (YRGMesp

n ). Assuming the signal model
treated in section II, and considering 1024 observations, a
comparison between the YRGMesp

5 , YRGM6, BGM, and MLA
is reported in Fig. 4. All of these models perform a full-
parallel search with different performance and complexity.
In particular, the YRGMesp

5 gains about 7 to 8 dB with 30
iterations on the YRGM6 that requires 100 iterations (the
gain is larger than 10 dB if it is compared to the BGM).
The complexity depends on the number of iterations run and
number of edges per variable/check node. Assuming one min
operation is equivalent to a sum operation, it is possible to
evaluate the following complexity factors:3

CY RGMesp
5

CY RGM6

<
1
24

and
CY RGMesp

5

CMLA
6 1

4

where CMod points out the complexity of one model (Mod is
YRGMesp

5 , or YRGM6, or MLA). These two factors measure
the complexity of the YRGMesp

5 with respect to the others. In
the both cases, they demonstrate that the complexity is lower
than the YRGM6 (based on the primitive polynomial) and the
MLA.

Nevertheless, not all cases are so simple to process. Indeed,
some LFSR sequences are characterized by equivalent sparse
polynomials with very high degrees that require a quite
complex computational search to be identified and evaluated.
In these cases, an exhaustive search on one sequence period
is performed by a software simulation, finding all equivalent
sparse polynomials that will be used to build RGMsesp. An
example is provided by GPS/SBAS Gold codes. Indeed, they
are generated by the dense generating polynomial showed in
(6) that has equivalent sparse polynomials with very high
degree. Performing an exhaustive search (on one period,
1023 chips), it is possible to identify 341 equivalent sparse

2The sum is made modulo-2.
3The complexity is measured counting the number of sum operators per

iteration and multiplying it by the number of iterations.
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Fig. 4. Performance in case of the m-sequence [15341]8 (r = 12).

polynomials: only 1 with 3 coefficients, and 340 with 4
coefficients, that offer the possibility to generate a large
number of different RGMsesp with only 3/4 edges per check
node and without 4-cycles. A pair of RGMsesp are compared
to the YRGM5, the BGM and the MLA in Fig. 5. In particular,
the RGMesp

M is the largest RGM achievable with all the 341
GPS/SBAS equivalent sparse polynomials, and the RGMesp

is generated grouping the BGMs obtained by the following
sparse equivalent polynomials

PEq,1(D) = D682 + D341 + 1
PEq,2(D) = D111 + D46 + D5 + 1
PEq,3(D) = D222 + D92 + D10 + 1
PEq,4(D) = D444 + D184 + D20 + 1
PEq,5(D) = D888 + D368 + D40 + 1.

As in the previous example, both of these models present
benefits in terms of detection probability with respect to the
YRGM5 and BGM, with fewer iterations. Furthermore, the
complexity is lower than that of the YRGM5 (generated by
(6)), as follows

CRGMesp
M

CY RGM5

<
1
3
,

CRGMesp

CY RGM5

<
1
90

,
CRGMesp

CMLA
<

1
2
.

CRGMesp
M

and CRGMesp are smaller than CY RGM5 . Further-
more, CRGMesp is smaller than CMLA, but it is possible to
verify that CRGMesp

M
> CMLA. Indeed, this method is most

suitable for longer Gold sequences.
Both of these examples demonstrate equivalent sparse poly-

nomials can be efficiently used to generate RGMs, on which
low-complexity iMPAs are run, achieving good performance
at low-SNR.

Another parameter to be considered, when iMPAs are imple-
mented, is the memory required to store all node messages dur-
ing each iteration. The memory requirements depends on the
selected TG and, more specifically, on the number of edges.
For this reason, large RGMs typically have large memory
requirements. To address this problem, a different activation
schedule is proposed. In the previous examples, all variable
or check nodes were activated in parallel at the same time
implying that all messages along edges could be stored. The
memory requirements for large RGMs can be reduced by using
a different activation schedule and a modified message passing

Fig. 5. Performance in case of the GPS/SBAS codes.

algorithm. The activation schedule is based on breaking the
RGM into a set of smaller sub-TGs, each one containing
a portion of the parity checks (i.e., two different sub-TGs
do not share common parity checks), and running the iMP
sequentially on all sub-TGs (see also [16], [17]). This yields
a reduction in memory requirements if the messages between
variable and check nodes in a given sub-TG are not stored
while iterating other sub-TGs. This, in fact, is not standard
iterative message passing since these internal messages would
normally be required for the next activation of the iMPA on
the sub-TG. Nevertheless, this yields a significant decrease in
memory requirements with a small performance degradation.
More precisely, assume there are I2 sub-TGs, one iteration is
made for each sub-model (inner iterations = 1), and its soft
output metrics become the input metrics in the next sub-model.
The MP ends either when all check nodes of one sub-TG are
verified or when I1 outer iterations are performed. In this way,
the computational complexity is the same as in the previous
examples, but the the required memory is only that needed to
store all messages of the largest sub-TG and, therefore, it is
reduced. A pictorial representation of this schedule is reported
in Fig. 6. In addition to not storing the internal messages
between sub-TG iterations, we use a min-sum algorithm with
damping factor α (see also [16], [17], and [18]).

A performance comparison between these two methods
is displayed in Fig. 7. Indeed, the RGMesp

M acquisition is
compared to the results achievable splitting this graph in 2
and 10 sub-TGs, with a damping factor 0.1. It is quite evident
that the split models maintain the same rapid convergence of
RGMesp

M , but their performance can change in function of α
and the characteristics of sub-TGs in which the initial RGM

Fig. 6. Multi-TGs activation schedule.
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Fig. 7. Comparison between the two activation schedules.

is separated. In this case, the required memory, it is about
1/2 in case of 2 sub-TGs and 1/10 in case of 10 sub-TGs,
because the initial RGM was split in sub-TGs with about the
same dimensions. Furthermore, all the models have the same
complexity.

V. HIERARCHICAL MODEL

In this section, we propose a distinct approach to acquire
Gold codes using hierarchical models (HMs) built by their
two generating m-sequences. In other words, introducing a
set of hidden variables (see [7], [8], and [15]) opportunely
defined, it is possible to generate two graphical models serially
connected. So, the result is a hierarchical TG on which an
iMPA can be run. The following example can clarify this
concept.

Considering the primitive polynomials in (5) (GPS/SBAS
LFSR generators), (4) can be expressed as

P (D) = Pc′ ·D10 + Pc′ ·D9 + Pc′ ·D8 + Pc′ ·D6

+ Pc′ ·D3 + Pc′ ·D2 + Pc′

which leads to the system of equations

σk−10 , zk ⊕ zk−3 ⊕ zk−10 (10a)
0 = σk ⊕ σk−2 ⊕ σk−3 ⊕ σk−6

⊕ σk−8 ⊕ σk−9 ⊕ σk−10 (10b)

where the (10a) defines a generic hidden variable σk. It is
evident that the system (10) identifies a concatenated structure
because (10b) (slave) directly depends on (10a) (master).
Furthermore, (10a) provides a first set of local constraints
in function of the index k that are useful to generate a first
preliminary model, H′. A second set of constraints is got by
the (10b), outputting the second graphical model H′′. These
two models are related by their hidden variables. An example
of this hierarchical TG is displayed in Fig. 8, in case of 23
observations. Specifically, a generic h′i corresponds to a H′

check node, while a generic h′′j is a check nodes of the H′′

matrix.
We also remark that this method can be applied to a

generic set of Gold codes and the example in Fig. 8 is not
the only way to realize a HM for GPS/SBAS sequences.
Indeed, many different HMs can be constructed manipulating
their generating m-sequence polynomials and inverting the
master and slave polynomials. Of course, grouping together

Fig. 8. Example of hierarchical model for GPS/SBAS codes.

more HMs, graphical models with redundancy are obtained.
Furthermore, the message updating algorithm for HMs is
described in the appendix.

Some preliminary results, obtained using this technique, are
displayed in Fig. 9. Specifically, HM1 and HM2 are both
generated by Pc′ and Pc′′ , from (5), by inverting master and
slave. The performance is better in the case of Pc′′ -master and
Pc′-slave (HM2). Furthermore, manipulating Pc′′(D) yields

P esp
c′′ (D) = Pc′′(D) · [D3 + D2 + 1

]

= D13 + D4 + 1

where P esp
c′′ -master and Pc′-slave are used to generate HM3

and HM4. In particular, in the case of HM4, the H′′ is
constructed as YRGM6. So, from results in Fig. 9, it is evident
that more sparse polynomials can generate models (HM3) that
provide better performance with fewer iterations than more
dense models (HM1 and HM2) and, adding more redundancy
(HM4), this performance can be improved. Therefore, these
results confirm the previous section conclusions.

VI. CONCLUSIONS

This paper focused on rapid acquisition of LFSR sequences
with dense generating polynomials and Gold codes, using
iMPAs. Exploiting the theorem reported in [11], we showed
that these two cases are closely related, because every set
of Gold sequences can be described by a high-order LFSR
(typically dense) generator. So, in order to detect these SS
sequences, iMPAs are run on RGMs generated by high
degree equivalent polynomials that are very sparse. These
polynomials can be algebraically computed by manipulation of
dense primitive polynomials of LFSR sequences. Simulations
results demonstrate that RGMsesp offer benefits in terms of
performance at low-SNR and low complexity respect graphical
models based on dense polynomials.

Furthermore, addressing the problem of large memory re-
quirements, a different activation schedule and modified mes-
sage passing rules were proposed using the min-sum algorithm
with a damping factor ([17] and [18]). This approach yields
significant memory savings without a change in computational
complexity as compared to the initial iMPAs on RGMs. This
modification can provide good performance but requires care
in selecting the sub-model partition and the damping factor.

In order to acquire Gold codes, HMs are also proposed. Our
preliminary results demonstrate the richness of the available
HMs for Gold codes, but the performance is not as good as



7

Fig. 9. Hierarchical model performance.

that obtained with redundant TG models. Thus, an interesting
future direction is to further explore these HMs in search for
better performance/complexity compromises.

Our results, take along with thoses in [1], [2], demonstrate
that iMPAs can yield low-complexity, full parallel search for
rapid PN search that approximates the ML method. Many
topics still remain to be investigated, such as: the SS ac-
quisition with the joint coarse estimation of code timing,
and carrier phase and frequency, the improvement of HM or
RGMesp techniques, the search of other graphical models that
could introduce more benefits, and more detailed hardware
implementation considerations.

VII. APPENDIX

In order to describe the message updating proposed for
HMs, a generic path of these graphs is extracted and shown in
Fig. 10. Let be z an observation vector of M elements, the soft-
in information (∆sii), in negative log-domain, is defined (see
also [15]) as ∆sii , − log

[
Pr(zi|xi=1)
Pr(zi|xi=0)

]
= zi, 0 6 i 6 M−1.

Here all the main steps of our algorithm are reported.
STEP 0 - Initialization (n = 1):

∆soi , soi[1]− soi[0] = ∆sii

all other messages are zero.
STEP 1 - Iteration nth, 1 6 n 6 Imax:

∆µ′i,j = ∆soi −∆η′j,i,
∀i:

zi→h′j

∆αj =
∏

∀i:zi→h′j

[S(∆µ′i,j)
] · min

∀i:zi→h′j

(∣∣∆µ′i,j
∣∣) ,

∀j:
h′j→σj

∆µ′′j,k = ∆αj + ∆βj −∆η′′k,j ,
∀j:

σj→h′′k

∆η′′k,j =
∏

∀l:σl→h′′k
l 6=j

[S(∆µ′′l,k)
] · min

∀l:σl→h′′k
l 6=j

(∣∣∆µ′′l,k
∣∣) , ∀k:

h′′k→σj

∆βj =
∑

∀k:h′′k→σj

∆η′′k,j = Sβj ·Mβj ,
∀j:

σj→h′j

∆η′j,i = Sβj ·
∏

∀m:
zm→h′j

m6=i

S(∆µ′m,j)· min
∀m:

zm→h′j
m6=i

[
Mβj ,

∣∣∆µ′m,j

∣∣] ,
∀j:

h′j→zi

∆soi = ∆sii +
∑

∀j:h′j→zi

(
∆η′j,i

)
, ∀i∈[0,M−1]

Fig. 10. One hierarchical model path.

where S(¦) = sgn(¦), Sβj = S(∆βj), and Mβj = |∆βj |.
The hard decision is made on the soft-out information

(∆soi). If the estimated vector verifies all the parity checks,
the algorithm will end, otherwise n = n + 1 and the STEP
1 will restart. The algorithm definitely ends when the last
iteration is performed (n = Imax).
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