
IMPLEMENTATION OF MESSAGE-PASSING ALGORITHMS FOR THE ACQUISITION OF
SPREADING CODES

Massimo Rovini, Fabio Principe, Luca Fanucci, and Marco Luise

Department of Information Engineering - University of Pisa
Via G. Caruso 16, I-56122 Pisa - Italy

{massimo.rovini, fabio.principe, luca.fanucci, marco.luise}@iet.unipi.it

ABSTRACT
A new technique to acquire pseudo-noise (PN) sequences has been
recently proposed in [1] and [2]. It is based on the paradigm of itera-
tive Message Passing (iMP) to be run on loopy graph. This technique
approximates the maximum-likelihood (ML) estimator, providing a
sub-optimal algorithm that searches all possible code phases in par-
allel, at low complexity and fast acquisition time. This work is ad-
dressed to the design of the architecture of an iMP detector, fol-
lowing the implementation methodologies typical of standard low-
density parity-check (LDPC) decoders, and demonstrates its benefits
in terms of acquisition time and complexity, compared with standard
techniques.

Index Terms— Message passing, low-density parity-check codes,
code division multiple access, decoder architecture, system design

1. INTRODUCTION

T HE ACQUISITION of spreading codes is an essential stage of a
DS/SS receiver. All standard detection algorithms are based on

the correlation between the received PN code and its local replicas
that are shifted until the right alignment is achieved, [3]. Thus, they
are inadequate to acquire long spreading codes, because they can ei-
ther yield fast detection at high complexity (e.g., full parallel search),
or have very-low complexity but extremely slow (e.g., serial search).

In this context, new methods based on modern coding theory
have recently been presented in [1] and [2], to acquire PN sequences.
They are based on running iterative Message-Passing (iMP) algo-
rithms on graphical models (e.g. Tanner/Wiberg Graphs) with cy-
cles, [4], so approximating the ML method. These sub-optimal esti-
mators search all possible code phases in parallel with a complexity
typically lower than the full parallel implementation, and an acqui-
sition time shorter than the serial algorithm.

Considering the studies and results reported in [1] and [5], this
paper is addressed to design a hardware implementation of an iMP
detector. Specifically, our approach is based on the design of an
iMP decoder, which implements a very-effective activation sched-
ule, named layered decoding. Then, a vectorized architecture is
described, and its performance and hardware complexity are thor-
oughly analyzed. Furthermore, the analysis is enriched by compar-
ing this novel implementation with classical architectures (parallel
and serial searches) in terms of correct/missed/wrong detection prob-
abilities and complexity.

2. SYSTEM MODEL

A basic base-band (BB) model of a DS/SS communication system
during the acquisition stage is sketched in Fig. 1. It is made up of: a

BB transmitter, a communication channel, and a BB receiver.

Fig. 1. Simplified DS/SS communication system model.

The BB transmitter is basically a PN sequence generator, which
yields a binary sequence c (with elements ck ∈ {0, 1}), and a BPSK
mapper that outputs the correspondent antipodal sequence y (with
symbols yk = (−1)ck). Only linear feedback shift register (LFSR)
generators are taken into account in this paper.

A common way to characterize an r-stage LFSR is providing its
generating polynomial as P (D) = g0 + g1 D + . . . + gr Dr , where
D is the unit delay operator, gi is the ith tap, and r = deg[P (D)] the
polynomial degree. Then, at the generic time k, the parity equation⊕r

i=0 gr−i · ck+i = 0 is satisfied by any subset {ck, . . . , ck+r} of
the LFSR sequence c, with ⊕ denoting modulo-2 sum.

M-Sequences are a subset of the LFSR family, because their gen-
erating polynomials are primitive, [3]. This implies that their pe-
riod N , is the maximum achievable with an r-stage LFSR generator
(N = 2r − 1), and, furthermore, that every m-sequence is univo-
cally identified by its primitive polynomial. Indeed, the initial word
of the SR (except for the forbidden all-zero word) only produces a
cyclical shift of the code.

The incoming BB spreading signal is modeled as a coherent pi-
lot signal (without data modulation and carrier frequency/phase off-
set) zk =

√
Ec · yk + nk =

√
Ec · (−1)ck + nk where zk is a

noisy sample at the receiver side and nk is an additive white gaus-
sian noise (AWGN) with mean value 0 and variance N0/2. This is
a simplified representation, which is widely used in SS literature to
isolate the issue of spreading-sequence acquisition (see [2] and [3]).

All traditional detection techniques used in DS/SS receivers are
correlation-based algorithms. Specifically, they shift local replicas
of the transmitted PN code, and correlate them with the received sig-
nal until the right alignment is got. When this happens, a suitable
decision unit should detect the correlation peak, taking the corre-
spondent code shift as an estimate of the incoming code phase. A
verification stage is sometimes run to check the correct detection on
a longer estimation time. If the last check is verified, the tracking
stage is launched, otherwise the local code is cyclically shifted and
a new acquisition try is carried out.

The most common designs of these algorithms are full parallel,
simple serial, and hybrid implementations [3].

In this context a new method to acquire spreading sequences,
based on the iterative decoding theory of channel codes, has been
proposed in [1] and [2]: indeed, it is easy to prove that a decoding
problem is definitely equivalent to an acquisition one. So, it is possi-
ble to design and run a MP algorithm on an ad-hoc graphical model
to acquire the desired PN sequence. A large bibliography on MP al-
gorithms is provided in literature, e.g., see [4, 1]. Therefore, we just
remark the key parameters that are necessary to define and configure
to correctly design these algorithms. They are listed below.

1. Graphical Model of the LFSR code, typically a loopy graph
to get a lower complexity than that of a tree graph.

2. Activation Schedule of the algorithm, the order used to acti-
vate variable and check nodes, including the algorithm termi-
nation (e.g., the maximum number of iterations Imax).

3. Message-Passing Algorithm, the algorithm used to compute
and update soft information into the graph. Sum-Product (SP)
or Min-Sum (MS) algorithms are the most common.

Concerning the graphical models, we refer to the construction
shown in [1, 5]. Specifically, these models, called redundant graph-
ical models (RGMs), are achieved by grouping a set of sub-graphs
(basic graphical models, BGMs) each one univocally generated by
one parity equation. All these equations have one common root
that is the generating polynomial of the considered LFSR sequence,
P (D). In detail, exploiting the finite-fields property that [P (D)]2

n

=

P (D2n

) for a given n, we have an equivalent higher-degree gener-
ating polynomial Pn(D),P (D2n

) ≡ P (D) that provides a corre-
spondent parity equation. Thus, from each Pn(D), the BGM Hn is
built as follows

Hn =

grn · · · g0 0 · · · · · · 0
0 grn · · · g0 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · · · · 0 grn · · · g0

Nr×Nc

(1)

where Nr =M−rn is the number of rows (or check nodes), Nc =M
is number of columns (or variable nodes), rn = deg [Pn(D)], and
M is the number of incoming observations. The RGM is got by
grouping all BGMs

HRGM =

H0

H1

...
HnM

N′r×N′c

where N ′
r and N ′

c are the number of rows and columns of HRGM,
respectively, and nM = blog2 {(M − 1)/r0}c is the order of the
higher-degree polynomial, with r0 =deg [P (D)].

The next section introduces the layered activation schedule with
a message-updating based on the generalized MS algorithm with the
damping factor γ, [6].

3. MESSAGE-PASSING DETECTION UNIT

The architectural design of a generic iterative Detection Unit (iDU) [5]
is depicted in Fig. 2. It is made up of an input buffer to collect M
soft observations, an iterative Processing Unit, addressed to run iMP
algorithms on loopy graphs, and a Parity Control Unit, which checks

the parity at the end of each iteration. If the parity is satisfied a veri-
fication stage is run (correct/wrong detection is checked), otherwise
a missed detection is got and a new acquisition try is run.

Focusing on the iterative Processing Unit, we resort to a very
powerful and efficient re-formulation of the iMP algorithm based on
the LDPC-like approach [7, 8], and known as layered or shuffled de-
coding. It is alternative to the traditional flooding schedule (FS), the
difference lying in the way messages are propagated through decod-
ing (activation schedule). The result is faster convergence, almost
twice that of FS, both for codes with cycles and cycle-free. This
is achieved through the early propagation of intermediate messages
(in the form of total information or soft-output, SO) which are made
available to the next elaborations immediately after their computa-
tion, instead of at the next iteration only.

The key idea is to view the code as the concatenation of smaller
and independent sub-codes, or layers, which are decoded in a se-
quence, with the propagation, layer by layer, of a-posteriori proba-
bilities. In the horizontal layered decoding (HLD), a layer is a sub-
set of rows of the parity-check matrix H; at the generic iteration t,
HLD proceeds following the three steps below.

1. The total information of the connected bits yn are used to
derive the variable–to–check (v2c) messages involved in the
update of CN m: µ

(t)
m,n = yn − ε

(t)
m,n.

2. Check–to–variable (c2v) messages are updated separately on
sign and magnitude:

− sign
(
ε(t+1)
m,n

)
=

∏

j∈N (m)\n

− sign
(
µ

(t)
m,j

)

∣∣∣ε(t+1)
m,n

∣∣∣ = γ · min
j∈N (m)\n

{∣∣∣µ(t)
m,j

∣∣∣
} (2)

3. The total information yn of the involved bits are updated:
yn = µ

(t)
m,n + ε

(t+1)
m,n .

In (2), the min-sum (MS) update rule is used for magnitudes, and
γ ∈ {0, 1} is the damping factor, used to scale down c2v messages
before propagation [6]. In this way, uncontrolled grows of messages
and so possible drifts toward pseudo-codewords are prevented.

4. DECODER ARCHITECTURE

The HLD decoding algorithm has been implemented with a block-
serial (or semi-parallel) decoder architecture based on serial process-
ing units (SPUs). Although intrinsically slower, SPUs are preferable
to parallel processing units (PPUs) for the reduced final complexity,
the higher flexibility and the less congested routing of the chip. On
the other hand, a fully parallel decoder based PPUs would result in
extremely high complexity, [9].

Fig. 2. Architectural design of an iDU.

4.1. Decoding Vectorization

Figure 3 shows the top-level decoder architecture. This is tailored
to a m-sequence with only q = 3 non-null taps in the generating
polynomial, which is put in the form P0(D) = 1 + Da + Db, with
b>a>1; thus, the corresponding BGM H0 features three diagonals
with offsets 0, α

.
= b−a and b. However, the proposed architecture

can be easily modified to cope with generic q-nomial generators.
The rows of H0 spaced by β

.
= b+1 are then grouped in a layer

to be updated in parallel. Thus, an array of SPUs with size Λ =
dNr/βe = d(M − b)/βe is used to update (up to) Λ parity-check in
parallel. The SPUs retrieve/store information from/to the message
and the soft-output memory, respectively; also included in the SO
data-path is a shuffling network, capable of shifting left or right the
vector of data. To support multiple updates in parallel, memories are
vectorized as well, and the data (SO and c2v messages) of Λ parity-
check equations are packed in a single row of memory.

Figure 4 shows the internal organization of the vectorized SO
memory, granting no hazard in the parallel access, and made of β
rows with dM/βe = Λ + 1 elements each. As shown in Fig. 4, the
data (SOs) packed on row i are relevant to the columns i + kβ of
H0, with k = 0, 1, ..., Λ. This rule is fully valid for rows number 0
to λ−1 = rem (M−b, β)−1, while rows λ to β−1 are incomplete.

It turns out that this memory arrangement is also compatible
with the decoding of next sub-codes Hi, i = 1, 2, ..., nM : by con-
struction, rows spaced by β, can be still decoded in parallel with
some differences. Let Nri = M − 2ib be the number of parity-
check constraints in sub-code i, then only Λi = bNri/βc SPUs are
working (we chose the least significant in the array), while the others
remain unused. As already mentioned above, the last β − λi layers
of sub-code i, with λi = rem

(
Nri, 2

ib
)
, only need Λi−1 SPUs.

In the processing of a generic layer, q = 3 arrays of SOs are
taken from memory and updated; for the l-th layer of sub-code i
these are the SOs with indices1: [l, l + β, l + 2β, ..., l + (Λi − 1)β],
[l + αi, l + αi + β, l + αi + 2β, ..., l + αi + (Λi − 1)β], and
[l + bi, l + bi + β, l + bi + 2β, ..., l + bi + (Λi − 1)β], with
αi = 2i(b−a) and bi = 2ib. If αi is not an integer multiple of β,
the three arrays of SOs above belong to different rows of memory,
and no hazard arises in the HLD algorithm.

At any update, only part of a row is actually involved (Λi or
Λi − 1 data), so that the shifting network of Fig. 3 is necessary to
align data read from memory to the active SPUs (the Λi least sig-
nificant ones in the array, as mentioned above). If the unused pro-
cessors remain transparent to their inputs, messages not involved in
the update are left untouched and are written back in memory. Note

1The following expressions hold only for l < λi, while for λi ≤ l < β
the Λi-th processor remains unused and the arrays contain one less location.

SPU

SPU #0

SPU #1

SPU #2

SPU # -1L

SO

L

SO

L

SO

MEM

SO

LL

SO

c2v

L

message
MEM

c2v

L

circular
shifting network

c2v

Fig. 3. Architecture of a layered iMP decoder for m-sequences.

b0 2b 3b4b (-1)bL

1+b1 1+2b 1+3b1+4b 1+(-1)bL

2+b2 2+2b 2+3b2+4b 2+(-1)bL

3+b3 3+2b 3+3b3+4b 3+(-1)bL

5b

1+5b

2+5b

3+5b

4+b4 4+2b 4+3b4+ b4 4+ L(-1)b

5+b5 5+2b 5+3b5+4b 5+(-1)bL

6+b6 6+2b 6+3b6+4b 6+(-1)bL

7+b7 7+2b 7+3b7+4b 7+(-1)bL

4+5b

5+5b

6+5b

7+5b

....+b....+2b+3b+ b4+ L(-1)b

l-2+bl-2 l-2+2b l-2+3bl b-2+4 l L-2+(-1)b

l-1+bl-1 2l-1 l-1+3bl b-1+4 l L-1+(-1)b

l+bl l+2b l+3bl b+4 l L b+(-1)

....+5b

l b-2+5

l b-1+5

l b+5

....+b....+2b+3b+ b4+ L b(-1)

b-3+bb-3 b-3+2b b-3+3bb b-3+4 b L b-3+(-1)

b-2+bb-2 b-2+2b b-2+3bb b-2+4 b L b-2+(-1)

b-1+bb-1 b-1+2b b-1+3bb b-1+4 b L b-1+(-1)

....+5b

b b-3+5

b b-2+5

b b-1+5

2

3

0

1

6

7

4

5

...

l-2

l-1

l

b-3

b-2

b-1

...

0 1 2 3 4 5 ... L-1

Lb

1+ bL

2+ bL

3+ bL

4+Lb

5+ bL

6+ bL

7+ bL

....+Lb

l L-2+ b

l L-1+ b

L

Fig. 4. Organization of the SO memory in a vectorized decoder.

first minimum

M1

MAGNITUDE

SIGN

1

0

Compare

1

0

v2c

index MIN

SIGN
update

1

0
MIN2

Compare

EN

MIN

MIN

EN

MIN2

Compute

c2v
message

appropriate

MIN

sign outsign in

c2v out

second minimum

SO in

c2v in

v2c buffer

SO out

g

Fig. 5. Serial processing unit (SPU) architecture.

that only one single shifting network is implemented in the decoder,
thanks to the use of differential cyclic shift techniques, where data
are pre-rotated according to the next use. The shifting network is de-
signed to circularly shift left or right an array of Λ data, with a max-
imum step of 2nM − 1. An efficient implementation of this network
may be based on a cascade of nM stages of 2-to-1 multiplexers.

The architecture of a SPU is shown in Fig. 5. Check–to–variable
messages are separately updated in sign and magnitude, and for mag-
nitudes, the MS algorithm is serially implemented as follows.

i) First, the q input messages are reordered as to bring the least
reliable message on the last position (first minimum).

ii) Then, the minimum of the remaining q−1 messages is com-
puted (second minimum).

As a result, the absolute (first) and the second minimum of the q in-
puts are available. These are used along with the updated signs and
the index of the first minimum to reconstruct the output c2v mes-
sages. Then, a shift-register with size q+1 = 4 is used to delay the
input v2c message and update the SO.

Finally, note that instead of real multipliers, damping of c2v
messages can be efficiently achieved with few shift&add networks.

4.2. Decoding Latency

Every sub-code of the m-sequence is decoded by the vectorized de-
coder with the same processing time, proportional to the numbers of
layers β, the number of non-null taps q in the generator and the num-
ber of performed iterations Imax. For the higher-order sub-codes, the
number of messages to update is smaller, but as mentioned above,
this only results in higher number of unused SPUs. Overall, the iMP
decoding time can be expressed as:

TiMP = {Imax · (nM + 1) · q · β + (q + 4)} · tclk (3)

with tclk the clock period and q + 4 the latency, in clock cycles,
of the data-path. As a result, the throughput of the iDU in num-
ber of acquisitions per time unit would approximately be: ΓiDU '
fclk/(Imax · (nM + 1) · q).

5. PERFORMANCE & COMPARISONS

In this section the performance of an iterative Detection Unit (iDU)
are compared to that of a full parallel (Maximum Likelihood Al-
gorithm, MLA) and a simple serial algorithms. For the latter, the
decision threshold was set to λ=0.85, so to have a low false alarm
and improve the acquisition time.

Referring to the communication system in Fig. 1, we assume to
transmit the m-sequence generated with the 3-nomial P (D) = 1 +
D7 + D18 (i.e., a = 7, b = 18 and α = 11, β = 19), also referred
to as g18 in the following, with period N = 218−1 = 262,143. At
the receiver side, the number of observations are M = 1,024 and
a RGM with nM = 5 is generated in agreement with the guidelines
reported in Sect. 2. The iMP detector was implemented with Γ = 53
SPUs and with messages on 7 bits, while the damping factor γ was
set to 6/16 for optimal performance. In Fig. 6(a) it is evident that
the wrong/missed detection probabilities of the iDU are higher than
simple-serial false alarm, but in terms of correct detection (Fig. 6(b))
their probabilities are approximatively equivalent (there is a cross
point). Nevertheless, in terms of acquisition times (as also shown in
[1] and [5]) the iDU is definitely faster.

Comparing the full parallel to the iMP (Fig. 6(b)), the best per-
formance (in terms of correct detection probability and acquisition
time) is provided by the MLA, but, as demonstrated in [5], the iMP
acquisition time tends to that of the full parallel. Furthermore, the
complexity of the iMP detector is clearly lower. Indeed, its com-
plexity count is reported in Tab. 1 in terms of adders, comparators,
2-to-1 multiplexers and registers. Considering that 1 reg ' 1.5 mux2
and 1 add ' 1 comp ' 2 mux2, about 11,130 mux2 are needed with
messages on 7 bits. Finally, adding the 135,090 memory bits, and ex-
ploiting that 1 bit ' 1 mux2, the iMP detector is memory-dominated,
and its complexity is about 146,220 mux2.

Conversely, the MLA needs N branches performing serial cor-
relations, each one using 1 adder and 2 registers. This is a clear
under-estimation of the full parallel complexity, because it neglects
the logic for the selection of the best correlation (barrels of compara-
tors) and memories. Nevertheless, it yields to about 9 millions mux2
for a same 7-bit representation. Thus, the iMP complexity is about 2
orders of magnitude less than MLA.

6. CONCLUSION

This paper has presented a DS/SS acquisition technique based on
iMP algorithm and performing a layered activation schedule on RGMs.
The proposed implementation showed a very-fast acquisition time,
which was achieved in a two-fold way: at the algorithmic level,

Table 1. iMP decoder complexity breakdown.
Unit # add comp mux2 reg
SPU Λ 4 3 4 5+q

Shuff. Netw. 1 - - nmΛ -
RAM mem. bits [row× col]

c2v q(nM +1)β × 7Λ - - - -
SO RAM β × 8(Λ + 1) - - - -
total iMP 135,090 bits 212 159 212 424

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
FA

, P
W

D
, P

M
D

-24.0 -22.0 -20.0 -18.0 -16.0 -14.0 -12.0 -10.0

Es/N0 [dB]

iMP decoder Nc2v=7
PMD + PWD

Fully Parallel
PMD + PWD (theor.)

Serial Search
PFA (theor.)

(a) Missed/wrong detections.

1.00

0.95

0.90

0.85

0.80

0.75

0.70

P
C

D

-19.0 -18.0 -17.0 -16.0 -15.0 -14.0 -13.0 -12.0 -11.0 -10.0
Es/N0 [dB]

-14.1dB

-14.4dB

MLA
(theor.)

Serial Search
(sim. & theor.)

iMP floating-point
FS BP & 20 iter.

iMP fixed-point
HLD MS, Nc2v= 7 & 10 iter.

(b) Correct detection.

Fig. 6. Comparison between iMP, full parallel (MLA) and serial
detector.

the use of HLD with damping of the check–to–variable messages
increased 2× the average convergence speed; then, at the architec-
tural level, the processing was vectorized and arranged in a cluster of
SPUs. Comparing with other state–of–the–art techniques, the iMP
detector performs a parallel acquisition with a complexity lower than
that of a full parallel algorithm, and an acquisition time definitely
shorter than that of a simple serial algorithm. This makes iDU with
RGMs an effective solution to detect long spreading codes.

7. REFERENCES

[1] O. W. Yeung and K. M. Chugg, “An iterative algorithm and low
complexity hardware architecture for fast acquisition of long PN
codes in UWB systems,” Springer J. VLSI and Signal Process-
ing, Special Issue on UWB Systems, vol. 43, no. 1, pp. 25–42,
April 2006.

[2] L. Yang and L. Hanzo, “Acquisition of m-sequences using recur-
sive soft sequential estimation,” IEEE Trans. Commun., vol. 52,
no. 2, pp. 199–204, February 2004.

[3] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt,
Spread Spectrum Communications Handbook. McGraw-Hill
TELECOM, 2002.

[4] F. R. Kschichang, B. J. Frey, and H. A. Loeliger, “Factor graph
and the sum-product algorithm,” IEEE Trans. Inform. Theory,
vol. 47, no. 2, pp. 498–519, February 2001.

[5] F. Principe, K. M. Chugg, and M. Luise, “Performance evalu-
ation of message-passing-based algorithms for fast acquisition
of spreading codes with application to satellite positioning,” in
Proc. ESA Workshop on Satellite Navigation User Equipment
Technologies NAVITEC 2006. Noordwijk, The Netherlands:
ESTEC, 11-13 December 2006.

[6] J. Chen and M. P. C. Fossorier, “Near optimum universal belief
propagation based decoding of low-density parity-check codes,”
IEEE Trans. Commun., vol. 50, no. 3, pp. 406–414, March 2002.

[7] M. Mansour and N. Shanbhag, “High-throughput LDPC de-
coders,” IEEE Trans. VLSI Syst., vol. 11, no. 6, pp. 976–996,
Dec 2003.

[8] D. Hocevar, “A Reduced Complexity Decoder Architecture via
Layered Decoding of LDPC Codes,” in IEEE Workshop on Sig-
nal Processing Systems, SISP 2004, 2004, pp. 107–112.

[9] A. Blanksby and C. Howland, “A 690-mW 1-Gb/s 1024-b, rate-
1/2 low-density parity-check code decoder,” IEEE J. Solid-State
Circuits, vol. 37, no. 3, pp. 404–412, Mar 2002.

